A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients
نویسندگان
چکیده
منابع مشابه
Elliptic Differential Equations with Measurable Coefficients
We prove the unique solvability of second order elliptic equations in non-divergence form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable and VMO in other variables. From this result, we obtain the weak uniqueness of the martingale problem associated with the elliptic equations.
متن کاملA Kernel-based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients
This paper is an extension of previous work where we laid the foundation for the kernel-based collocation solution of stochastic partial differential equations (SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian noises. In the present paper we show that kernel-based collocation methods can be used to approximate the solutions of high-dimensional elliptic partial differe...
متن کاملA Multimodes Monte Carlo Finite Element Method for Elliptic Partial Differential Equations with Random Coefficients
This paper develops and analyzes an efficient numerical method for solving elliptic partial differential equations, where the diffusion coefficients are random perturbations of deterministic diffusion coefficients. The method is based upon a multimodes representation of the solution as a power series of the perturbation parameter, and the Monte Carlo technique for sampling the probability space...
متن کاملIterative Solvers for a Spectral Galerkin Approach to Elliptic Partial Differential Equations with Fuzzy Coefficients
Mathematical models of physical systems often contain parameters with an imprecisely known and uncertain character. It is quite common to represent these parameters by means of random variables. Numerous methods have been developed to compute accurate approximations to solutions of equations with such parameters. This approach, however, may not be entirely justified when the uncertainty is due ...
متن کاملStrong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients
We consider the problem of numerically approximating the solution of an elliptic partial di erential equation with random coe cients and homogeneous Dirichlet boundary conditions. We focus on the case of a lognormal coe cient, we have then to deal with the lack of uniform coercivity and uniform boundedness with respect to the randomness. This model is frequently used in hydrogeology. We approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2018
ISSN: 2166-2525
DOI: 10.1137/17m1148888